100.0% (46/46)

54.2% (52/96)

# Description

Given two matrices $A$, $B$ with size $n \times m$ and $m \times p$ respectively, where

$A_{n\times m} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} ,\ B_{m\times p} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mp} \end{bmatrix}$

The result of multiplication of $A$ and $B$ is a matrix with size $n \times p$, where each element

$ab_{ij} = \displaystyle \sum_{k=1} ^ {m} a_{ik} b_{kj} ,$ for $1 \leq i \leq n$ and $1 \leq j \leq p$

# Input Format

The first line contains three integers representing $n$, $m$ and $p$ $(1 \leq n, m, p \leq 100)$,
and is followed by $n + m$ lines: the first $n$ lines represent matrix $A$, and the other $m$ lines are for matrix $B$. $(0 \leq a_{ij}, b_{ij} \leq 1000)$

# Output Format

$n$ lines with $p$ elements in each line, representing the result of multiplication of $A$ and $B$.

2 3 2
1 2 3
2 4 5
1 3
2 4
4 2

17 17
30 32

# Hints

In the sample,
$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ \end{bmatrix} ,\ B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 4 & 2 \\ \end{bmatrix}$